
The COM Specification Chapter 5. COM Clients

1COM Clients
As described in earlier chapters, a COM Client is simply any piece of code that makes use of another
object through that object’s interfaces. In this sense, a COM Client may itself be a COM Server acting in
the capacity of a client by virtue of using (or reusing) some other object.
If the client is an application, that is, an executable program as opposed to a DLL, then it must follow all
the requirements for a COM Application as detailed in Chapter 4. That aside, clients have a number of
ways to actually get at an object to use as discussed in a previous chapter. The client may call a specific
function to create an object, it might ask an existing object to create another, or it might itself implement
an object to which some other code hands yet another object’s interface pointer. Not all of these objects
must have CLSID.
This chapter, however, is concerned with those clients that want to create an object based on a CLSID,
because at some point or another, many operations that don’t directly involve a CLSID do eventually
resolve to this process. For example, moniker binding internally uses a CLSID but shields clients from that
fact. In any case, whatever client code uses a CLSID will generally perform the following operations in
order to make use of an object:

1. Identify the class of object to use.

2. Obtain the “class factory” for the object class and ask it to create an uninitialized
instance of the object class, returning an interface pointer to it.

3. Initialize the newly created object by calling an initialization member function of the
“initialization interface,” that is, one of a generally small set of interfaces that have
such functions.

4. Make use of the object which generally includes calling QueryInterface to obtain
additional working interface pointers on the object. The client must be prepared for
the potential absence of a desired interface.

5. Release the object when it is no longer needed.

The following sections cover the functions and interfaces involved in each of these steps. In addition, the
client may want to more closely manage the loading and unloading of server modules (DLLs or EXEs)
for optimization purposes, so this chapter includes a section of such management.
As far as the client is concerned, the COM Library exists to provide fundamental implementation locator
and object creation services and to handle remote procedure calls to local or remote objects (in addition
to memory management services, of course). How a server facilitates these functions is the topic of
Chapter 6.
Before examining the details of object creating and manipulation, realize that after the object is created
and the client has its first interface pointer to that object, the client cannot distinguish an in-process
object from a local object from a remote object by virtue of examining the interface pointer or any other
interfaces on that object. That is, all objects appear identically to the client such that after creation, all
requests made to the object’s services are made by calling interface member functions. Period. There are
not special exceptions that a client must make at run-time based on the distance of the object in question.
The COM Library provides any underlying glue to insure that a call made to a local or remote object is,
in fact, marshaled properly to the other process or the other machine, respectively. This operation is
transparent to the client, who always sees any call to an object as a function call to the objects interfaces
as if that object were in-process. This consistency is a key benefit for COM clients as it can treat all
objects identically regardless of their actual execution context. If you are interested in understanding how
this transparency is achieved, please see Chapter 7, “Communicating via Interfaces: Remoting” for more
details. There you will find that all clients do, in fact, always call an in-process object first, but in local
and remote cases that in-process object is just a proxy that takes care of generating a remote procedure
call.

DRAFT Page: 1 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 5. COM Clients The COM Specification

1.1Identifying the Object Class
A central feature of COM is that a client can opaquely locate and dynamically load the specific piece
code that knows how to manipulate a specific class of object. This is accomplished through the COM-
supplied implementation locator services through which COM associates a class identifier, that is, CLSID,
with the server module for that object class. Therefore the COM Library is responsible for defining how
this association occurs which usually involves a system-wide persistent registry of CLSIDs and their
corresponding servers. For example, under Microsoft Windows the COM Library stores the pathnames of
in-process server DLLs and local server EXEs in the system registry under the text string of the object’s
CLSID.
The practical upshot of all this for client applications is that the client need not know nor care how this
information is maintained or how the COM Library performs the association from CLSID to server. In
the same manner the client need not perform any additional work to establish communication with a local
or remote object as such steps are also handled in COM transparently.
This does leave the question of how the client determines what CLSID to hand to COM in the first place.
There is no single answer, for it varies from situation to situation. In some cases the object to use has a
well-known and fixed CLSID that is compiled into the client application. In other cases the client may
have a constant text string (compiled, that is) that represents a CLSID and uses some means to associate
that name with a CLSID. Another example may be that the client has some previously saved information
that directly or indirectly translates to a CLSID, such as a piece of storage (where the CLSID is serialized
into a stream) or a moniker (where the CLSID is implied by the data which the moniker references).
Finally, there may be some means through which the client displays a list of available objects to the end-
user where each item in the list corresponds to a specific CLSID. In such cases the list is generated by
browsing the registry for all existing object classes. Other examples are clearly possible, particularly in
network situations.

1.2Creating the Object
Given a CLSID the client must now create an object of that class in order to make use of its services. It
does so using two steps:

6. Obtain the “class factory” for the CLSID.

7. Ask the class factory to instantiate an object of the class, returning an interface pointer
to the client.

After these steps, illustrated in Figure 5-1, the client is free to do whatever it wishes with the object
through whatever interfaces the object supports. In fact, everything done with the object is accomplished
through calls to interface member functions—APIs that seems to affect objects through other means are
merely wrappers to common sequences of interface calls.
Before examining each of these steps, let’s take a look at what a class factory is in the first place.

1.2.1The Class Factory Object: IClassFactory Interface
The class factory is another object itself that exists to manufacture objects (hence the name “factory”) of
a specific class (hence the qualifier “class”).1 A class factory object is implemented by a server module,
either a DLL or EXE, and supports the IClassFactory interface described below. For the purposes of COM
Clients, the IClassFactory interface is and interface on an object used by a client. For information on
implementation, see Chapter 6, “COM Servers.”

1 Note that IClassFactory would be more appropriately be named IObjectFactoy since using it one creates objects, not classes. But
IClassFactory remains for historical reasons.

Copyright © 1995 Microsoft Corporation Page: 2 DRAFT
All Rights Reserved

The COM Specification Chapter 5. COM Clients

Class Factory

Object

Server

Client
(1) “Create
an Object”

(2) Manufacture
Object

(3) Return new
interface pointer

to client

Figure 5-1 A client asks a class factory in the server to create an object.

The IClassFactory interface is implemented by COM servers on a “class factory” object for the purpose of
creating new objects of a particular class. The interface also provides for a COM client to keep the server
in memory even when it is not servicing any object. A class factory has a one-to-one correspondence with
a CLSID (although actual implementations can be made generic to service multiple classes if the COM
server so chooses).

[
 object,
 uuid(00000001-0000-0000-C000-000000000046), // IID_IClassFactory
 pointer_default(unique)
]
interface IClassFactory : IUnknown
{

HRESULT CreateInstance([in] IUnknown * pUnkOuter, [in] REFIID iid, [out] void * ppv);
HRESULT LockServer([in]BOOL fLock);

}

IClassFactory::CreateInstance
HRESULT IClassFactory::CreateInstance(pUnkOuter, iid, ppvObject)
Create an uninitialized instance, that is, object, of the class associated with the class factory, returning an
interface pointer of type iid on the object to the caller in the out-parameter ppvObject.

If the object is being created as part of an aggregate—that is, the client of the object in this case is also an
object server itself—then pUnkOuter contains the IUnknown pointer to the “outer unknown.” See “Object
Reusability” in Chapter 6 for more information. Class implementations need to be consciously designed
to be aggregatable and accordingly not all classes are so designed.
Argument Type Description
pUnkOuter IUnknown * The controlling unknown of the aggregate object if this object is being

created as part of an aggregate. If NULL, then the object is not being
aggregated, which is the case when the object is being created from a
pure client. If non-NULL and the class does not support aggregation,
then the function returns CLASS_E_NOAGGREGATION.

iid REFIID The identifier of the first interface desired by the caller through which
it will communicate with the object; usually the “initialization
interface.”

ppv void ** The place in which the first interface pointer is to be returned.
Return Value Meaning
S_OK Success. A new instance was created.
E_NOAGGREGATION Use of aggregation was requested, but this class does not support it.
E_OUTOFMEMORY Memory could not be allocated to service the request.
E_UNEXPECTED An unknown error occurred.

DRAFT Page: 3 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 5. COM Clients The COM Specification

IClassFactory::LockServer
HRESULT IClassFactory::LockServer(fLock)
This function can be called by a client to keep a server in memory even when it is servicing no objects.
Normally a server will unload itself (an EXE server) or allow the COM library to unload it (a DLL
server) when the server has no objects left to serve. If the client so desires, it can lock the server in
memory to prevent it from being loaded and unloaded multiple times, which can improve performance of
object instantiations. Most clients have no need to call this function. It is present primarily for the benefit
of sophisticated clients with special performance needs from certain classes.
It is an error to call LockServer(TRUE) and then call Release without first releasing the lock with LockSer-
ver(FALSE). Whoever locks the server is responsible for unlocking it, and once the class factory is
released, there is no mechanism by which the caller can be guaranteed to later connect to the same class
factory. All calls to IClassFactory::LockServer must be counted, not only the last one. Calls will be balanced;
that is, for every LockServer(TRUE) call, there will be a LockServer(FALSE) call. If the lock count and the
class object reference count are both zero, the class object can be freed.
For more information on the use of LockServer, see the “Server Management” section below. For more
information on implementing this function, see Chapter 6 under “The Class Factory: Implementation and
Exposure.”
Argument Type Description
fLock BOOL True if a lock is being added to the class factory; false if one is being

removed.
Return Value Meaning
S_OK Success.
E_UNEXPECTED An unknown error occurred.

1.3Obtaining the Class Factory Object for a CLSID
Now that we understand what a class factory is and what functions it performs through the IClassFactory
interface we can examine how a client obtains the class factory. This depends only slightly on whether
the object in question is in-process, local, or remote. For the most part, all cases are handled through the
same implementation locator service in the COM library and the same API functions. The implications
are greater for servers as shown in Chapter 6.
For all objects on the same machine as the client, including object handlers, the client generates a call to
the COM Library function CoGetClassObject. This function, described below, does whatever is necessary to
obtain a class factory object for the given CLSID and return one of that class factory’s interface pointers
to the client. After that the client may calls IClassFactory::CreateInstance to instantiate objects of the class.
We say here that the client must generate a call to CoGetClassObject because it is not always necessary to
call this function directly. When a client only wants to create a single object of a given class there is no
need to go through the process of calling CoGetClassObject, IClassFactory::CreateInstance, and
IClassFactory::Release. Instead it can use API function CoCreateInstance described below which conveniently
wraps these three more fundamental steps into one function.

CoGetClassObject
HRESULT CoGetClassObject(clsid, grfContext, pServerInfo, iid, ppv)
Locate and connect to the class factory object associated with the class identifier clsid. If necessary, the
COM Library dynamically loads executable code in order to accomplish this. The interface by which the
caller wishes to talk to the class factory object is indicated by iid; this is usually IID_IClassFactory but can,
of course, be any other object-creation interface.2 The class factory’s interface is returned in ppv with one
reference count on it on behalf of the caller, that is, the caller is responsible for calling Release after it has
finished using the class factory object.

2 For example, the remoting architechture described in Chapter 7 uses a different type of “factory” interface.

Copyright © 1995 Microsoft Corporation Page: 4 DRAFT
All Rights Reserved

The COM Specification Chapter 5. COM Clients

Different pieces of code can be associated with one CLSID for use in different execution contexts such as
in-process, local, or object handler. The context in which the caller is interested is indicated by the
grfContext parameter, a group of flags taken from the enumeration CLSCTX:

typedef enum tagCLSCTX {
CLSCTX_INPROC_SERVER = 1,
CLSCTX_INPROC_HANDLER = 2,
CLSCTX_LOCAL_SERVER = 4,
CLSCTX_REMOTE_SERVER = 16.
} CLSCTX;

The several contexts are tried in the sequence in which they are listed here. Multiple values may be
combined (using bitwise OR) indicating that multiple contexts are acceptable to the caller:

#define CLSCTX_INPROC (CLSCTX_INPROC_SERVER | CLSCTX_INPROC_HANDLER)
#define CLSCTX_SERVER (CLSCTX_INPROC_SERVER | CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER)
#define CLSCTX_ALL (CLSCTX_INPROC_SERVER | CLSCTX_INPROC_HANDLER | CLSCTX_LOCAL_SERVER |

CLSCTX_REMOTE_SERVER)

These context values have the following meanings which apply to all remote servers as well:
Value Action Taken by the COM Library
CLSCTX_INPROC_SERVER Load the in-process code (DLL) which creates and

completely manages the objects of this class. If the DLL is
on a remote machine, invoke a surrogate server as well to
load the DLL.

CLSCTX_INPROC_HANDLER Load the in-process code (DLL) which implements client-
side structures of this class when instances of it are accessed
remotely. An object handler generally implements object
functionality which can only be implemented from an in-
process module, relying on a local server for the remainder of
the implementation.3

CLSCTX_LOCAL_SERVER Launch the separate-process code (EXE) which creates and
manages the objects of this class.4

CLSCTX_REMOTE_SERVER Launch the separate-process code (EXE) on another machine
which creates and manages objects of this class.

The COM Library should attempt to load in-process servers first, then in-process handlers, then local
servers, then remote servers. This order helps to minimize the frequency with which the library has to
launch separate server applications which is generally a much more time-consuming operation than
loading a DLL, especially across the network.
When specifying CLSCTX_REMOTE_SERVER, the caller may pass a COMSERVERINFO structure to indicate
the machine on which to run the server module, which is defined as follows:

typedef struct tagCOMSERVERINFO {
OLECHAR *szRemoteSCMBindingHandle;
} COMSERVERINFO;5

The COM Library implementation of this CoGetClassObject relies on the system registry to map the CLSID
to the server module to load or launch, but this process is opaque to the client application. If, however,
COM cannot make any association then the function fails with the code REGDB_E_CLASSNOTREG. If this
function launches a server application it must wait until that server registers its class factory or until a
time-out occurs (duration determined by COM, something on the order of a minute of processing time).
See the CoRegisterClassObject function in Chapter 6 under “Exposing the Class Factory from Local
Servers.”
3 For example, in OLE 2, built on top of COM, there is an interface called IViewObject through which a client can ask an object to draw

its graphical presentation directly to a Windows device context (HDC) through IViewObject::Draw. However, an HDC cannot be shared
between processes, so this interface can only be implemented inside as part of an in-process object. When an object server wishes
to provide optimized graphical output but does not wish to completely implement the object in-process, it can use a lightweight
object handler to implement just the drawing functionality where it must reside, relying on the local server for the full object
implementation.

4 In some cases the object server may already be running and may allow its class factory to be used multiple times in which case the
COM Library simply establishes another connection to the existing class factory in that server, eliminating the need to launch
another instance of the server applications entirely. While this can improve performance significantly, it is the option of the server
to decide if its class factory is single- or multiple-use. See the function CoRegisterClassObject in Chapter 6 for more information.

5 This abstraction is still under design.

DRAFT Page: 5 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 5. COM Clients The COM Specification

The arguments to this function are as follows:
Argument Type Description

clsid REFCLSID The class of the class factory to obtain.
grfContext DWORD The context in which the executable code is to run.

pServerInfo COMSERVERINFO* Identifies the machine on which to activate the executable code.
Must be NULL when grfContext does not contain
CLSCTX_REMOTE_SERVER. When NULL and grfContext contains
CLSCTX_REMOTE_SERVER, COM uses the default machine location
for this class.

iid REFIID The interface on the class factory object desired by the caller.
ppv void ** The place in which to put the requested interface.

Return Value Meaning
S_OK Success.
REGDB_E_CLASSNOTREG An implementation of the requested class could not be located.
E_OUTOFMEMORY Memory could not be allocated to service the request.
E_UNEXPECTED An unknown error occurred.
The following code fragment demonstrates how a client would call CoGetClassObject and create an in-
process instance of the TextRender object with CLSID_TextRender using the class factory to request an
IUnknown pointer for the object. In this example the client is explicitly limiting COM to use only in-
process servers:

IClassFactory *pCF;
IUnknown * pUnkObj;
HRESULT hr;

hr=CoGetClassObject(CLSID_TextRender, CLSCTX_INPROC_SERVER, NULL, IID_IClassFactory, (void *)pCF);
if (FAILED(hr))

//Could not obtain class factory, creation fails completely.

/*
 * Create the object. If this call succeeds the pUnkObj will
 * be valid and have a reference count on it on behalf of the caller
 * which the caller must Release.
 */
hr=pCF->CreateInstance(NULL, IID_IUnknown, (void *)pUnkObj);

//Caller must call Release regardless of CreateInstance result
pCF->Release();

if (FAILED(hr))
//Object creation failed: interface may not be supported

/*
 * Now use the object in whatever capacity the caller desires.
 * The first step will be initialization.
 */

//Release the object when finished with it.
pUnkObj->Release();

Since the process of calling CoGetClassObject, IClassFactory::CreateInstance, and IClassFactory::Release is so
common in practice, the COM Library provides a wrapper API function for this sequence called
CoCreateInstance. This allows the client to avoid the whole issue of class factory objects entirely.
However, CoCreateInstance only creates one object at a time; if the client wants to create multiple objects
of the same class at once, it is more efficient to obtain the class factory directly and call
IClassFactory::CreateInstance multiple times, avoiding excess calls to CoGetClassObject and
IClassFactory::Release.

Copyright © 1995 Microsoft Corporation Page: 6 DRAFT
All Rights Reserved

The COM Specification Chapter 5. COM Clients

CoCreateInstance
HRESULT CoCreateInstance(clsid, pUnkOuter, grfContext, iid, ppvObj)
Create an uninitialized instance of the class clsid, asking for interface iid using the execution contexts
given in grfContext. If the object is being used as part of an aggregation then pUnkOuter contains a pointer to
the controlling unknown. These parameters behave as those of the same name in CoGetClassObject (clsid)
and IClassFactory::CreateInstance (pUnkOuter, grfContext, iid, ppv),
CoCreateInstance is simply a wrapper function for CoGetClassObject and IClassFactory that is implemented
(conceptually) as follows:

HRESULT CoCreateInstance(REFCLSID clsid, IUnknown * pUnkOuter,
DWORD grfContext, REFIID iid, void * ppvObj)
{
IClassFactory * pCF;
HRESULT hr;

hr=CoGetClassObject(clsid, grfContext, NULL, IID_IClassFactory, (void *)pCF);

if (FAILED(hr))
return hr;

hr=pCF->CreateInstance(pUnkOuter, iid, (void *)ppv);
pCF->Release();

/*
 * If CreateInstance fails, ppv will be set to NULL. Otherwise
 * ppv has the interface pointer and hr contains NOERROR.
 */
return hr;
}

Argument Type Description
clsid REFCLSID The class of which an instance is desired
pUnkOuter IUnknown* The controlling unknown, if any.
grfContext DWORD The CLSCTX to be used.
iid REFIID The initialization interface desired
ppv void** The place at which to return the desired interface.
Return Value Meaning
S_OK Success.
Any error that can be returned from
CoGetClassObject or
IClassFactory::CreateInstance

Semantics as in those functions.

E_UNEXPECTED An unknown error occurred.

CoCreateInstanceEx
HRESULT CoCreateInstanceEx(clsid, pUnkOuter, grfContext, pServerInfo, dwCount, rgMultiQI)
Create an uninitialized instance of the class clsid on a specific machine, asking for a set of interface iids in
pResult using the execution contexts given in grfContext. If the object is being used as part of an
aggregation then pUnkOuter contains a pointer to the controlling unknown.
To help optimize round-trips to a remote machine during instantiation, this API allow the client to
specify a set of interfaces to return on the object via the rgMultiQI array of MULTI_QI structures, defined as
follows:

typedef struct tagMULTI_QI {
REFIID riid; // interface to return
void* pvObj; // location to return interface pointer
HRESULT hr; // location to return result of QueryInterface for riid
} MULTI_QI;

The semantics of using this API and passing a MULTI_QI array are identical to the following sequence of
operations, but incur less overhead for the client, the server, and the network:

DRAFT Page: 7 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 5. COM Clients The COM Specification

IClassFactory *pCF;
IUnknown *punk;
COMSERVERINFO csi;

CoGetClassObject(clsid, CLSCTX_SERVER, &csi, IID_IClassFactory, (void**)&pCF);
pCF->CreateInstance(NULL, IID_IUnknown, (void**)&punk);
for (DWORD i=0; i<dwCount; i++)

rgMultiQI[I].hr = punk->QueryInterface(rgMultiQI[i].riid, &rgMultiQI[i].pvObj);
punk->Release();

Argument Type Description
clsid REFCLSID The class of which an instance is desired
pUnkOuter IUnknown* The controlling unknown, if any.
grfContext DWORD The CLSCTX to be used.
pServerInfo COMSERVERINFO* Identifies the machine on which to activate the executable code.

Must be NULL when grfContext does not contain
CLSCTX_REMOTE_SERVER. When NULL and grfContext contains
CLSCTX_REMOTE_SERVER, COM uses the default machine location
for this class.

dwCount DWORD The number of MULTI_QI structures in the rgMultiQI array.
rgMultiQI MULTI_QI* An array of MULTI_QI structures. On input, each element should be

cleared and the riid member set to an IID being requested. On output,
one or more of the interfaces may be retrieved, and individual pvObj
members will be non-NULL.

Return Value Meaning
S_OK Success.
CO_S_NOTALLINTERFACES Not all of dwCount interfaces requested in the MULTI_QI array were

successfully retrieved. Examine individual pvObj members of MULTI_QI to
determine exactly which interfaces were returned.

Any error that can be returned from
CoGetClassObject or
IClassFactory::CreateInstance

Semantics as in those functions.

E_UNEXPECTED An unknown error occurred.

1.4Initializing the Object
After the client has successfully created an object of a given class it must initialize that object. By
definition, any new object created using IClassFactory::CreateInstance (or variant or wrapper thereof) is
uninitialized. Initialization generally happens through a single call to a member function of the
“initialization interface.” This interface is usually the one requested by the client in its call to create the
object, but this is not required. Before an object is initialized, the only calls that are guaranteed to work
on the object (besides the initializing functions themselves) are the IUnknown functions (of any interface)
unless otherwise explicitly specified in the definition of an interface. In addition, QueryInterface is only
guaranteed to work for IUnknown and any initialization interface, but not guaranteed for a non-
initialization interface.
Some objects will not require initialization before they are function through all of their interfaces. Those
that do require initialization will define, either explicitly through documentation of the object or
implicitly through the scenarios in which the object is used, which member of which interface can be
used for initialization.
For example, objects that can serialize their persistent data to a file will implement the IPersistFile
interface (see “Persistent Storage Interfaces for Objects” in Chapter 8). The function IPersistFile::Load,
which instructs the object to load its data from a file, is the initialization function and IPersistFile is the
initialization interface. Other examples are objects that can serialize to storages or streams, where the
objects implement the initialization interfaces IPersistStorage or IPersistStream, respectively (again, see
Chapter8). The Load functions in these interfaces are initialization functions as is IPersistStorage::InitNew,
which initializes a new object with storage instead of loading a previously saved version.

Copyright © 1995 Microsoft Corporation Page: 8 DRAFT
All Rights Reserved

The COM Specification Chapter 5. COM Clients

1.5Managing the Object
Once an object is initialized, it is entirely up to the client to determine what it intends to do with that
object. It is often the case that the initializing interface is not the “working” interface through which the
client will primarily use the object. The creation sequence only nets the client a single interface pointer
that has a limited scope of functionality. If the client wishes to perform an operation outside that scope, it
must call the known interface’s QueryInterface function to ask for another interface on the same object.
For example, say a client has created and initialized an object but now wishes to obtain a graphical
presentation, say a bitmap, from that object by calling IDataObject::GetData (see Chapter 10 for details on
this function). The client must call QueryInterface to obtain an IDataObject pointer before calling the
function.
It is important to note that all operations on that object will occur through calls to the member functions
of the object’s various interfaces. Any additional API functions that the client might call to affect the
object itself are usually wrapper functions of common sequences of interface function calls. There simply
is no other way to affect the object other than through it’s interfaces.
Because a client must ask for an interface before it can possibly ask the object to perform the actions
defined in the interface, the client cannot ask the object to perform an action the object does not support.
This is a primary strength of the QueryInterface function as described in the early chapters of this
document. Calling QueryInterface for access to an object’s functionality is not problematic nor
inconvenient because the client usually makes the call specifically at the point where the client wants to
perform some action on the object. That is, clients generally do not call QueryInterface for all possible
interfaces after the object is created so as to have all the pointers on hand—instead, the client calls
QueryInterface before attempting to perform some action with the object.
In practice this means that the client must be prepared for the failure of a call to QueryInterface. Instead of
being a complete pain to implementation, such preparation defines a mechanism through which the client
can make dynamic choices based on the functionality of the object itself on an object-by-object basis.
For example, consider a client application that has created a number of objects and it now wants to save
the application’s state, which includes saving the state of each object. Let’s say the client is using
structured storage for its native file representation, so its first choice will be to assign an individual
storage element in that file for each object. Each object can then store structured information itself and it
indicates its ability to do by implementing the IPersistStorage interface. However, some object may not
know how to write to a storage but know how to write to a stream and indicate the capability by
implementing IPersistStream. Yet others may only know how to write information to a file themselves and
thus implement IPersistFile. Finally, some objects may not know how to serialize themselves at all, but can
provide a binary memory copy of the their native data through IDataObject.
In this case the client’s strategy will be as follows: if an object supports IPersistStorage, then give it an
IStorage instance and ask it to save its data into it by calling IPersistStorage::Save. If that object does not
provide such support, check if it supports IPersistStream, and if so, create a client-controlled stream for it
(in perhaps a separate client-controlled storage element) and pass that IStream pointer to the object
through IPersistStream::Save. If the object does not support streams, then check for IPersistFile. If the object
supports serialization to a file, then have the object write its data into a temporary file by calling
IPersistFile::Save, then make a binary copy of that file in a client-controlled stream element within a client-
controlled storage element. If all else fails, attempt to retrieve the object’s binary data from
IDataObject::GetData using the first format the object supports, and write that binary data into a client-
controlled stream in a client-controlled storage.
Code for such a strategy would be structured something like the following pseudo-code for a “save
object” function in the client:

BOOL SaveObject(IUnknown * pUnkObj)
{
pUnkObj->QueryInterface(IID_IPersistStorage)

if (success)
{
create a storage element for the object
call IPersistStorage::Save

DRAFT Page: 9 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 5. COM Clients The COM Specification

call IPersistStorage::Release
return TRUE
}

//All other cases use a client-controlled stream
create a stream element for the object in some storage

//IPersistStorage not supported, try IPersistStream
pUnkObj->QueryInterface(IID_IPersistStream)

if (success)
{
call IPersistStream::Save
call IPersistStream::Release
return TRUE
}

//IPersistStream not supported, try IPersistFile
pUnkObj->QueryInterface(IID_IPersistFile)

if (success)
{
//Save to a temp file
call IPersistFile::Save("objdata.tmp");
call IPersistFile::Release
read data from temp file
write data to the stream
return TRUE
}

//All else failed, try IDataObject
pUnkObj->QueryInterface(IID_IDataObject)

if (success)
{
call IDataObject::EnumFormatEtc
call IEnumFORMATETC to get the first format (assume it's native)
call IEnumFORMATETC::Release

call IDataObject::GetData for the format, asking for global memory
call IDataObject::Release

Lock global memory and write to stream
Free global memory
return TRUE
}

//Everything failed, so give up
destroy stream we created: not using it.
return FALSE
}

In this example the client is prepared for many different types of objects and how they might provide
persistent information (and using IDataObject::GetData here is stretching the concept somewhat, but shows
that the client has many choices). Based on the results of QueryInterface the client decides at run-time how
to save each individual object.
Reloading these objects would be a similar procedure, but the client would know, from the structure of its
storage and other information it saved about the objects itself, which method to use to reload the object
from the storage. The client wants to insure that it uses the same method to load the object that it did for
saving it originally, that is, use the same interface instead of querying for the best one. The reason is that
while the data was passively stored on disk, the object that wrote that data might have been updated such
that where it once only supported IPersistStream, for example, it now supports IPersistStorage. In that case
the client should ask it to load the data using IPersistStream::Load.
However, when the client goes to save the object again, it will now successfully find that the object
supports IPersistStorage and can now have the object save into a storage element instead. (The container
would also insure that the old client-controlled stream was deleted as it is no longer in use for that

Copyright © 1995 Microsoft Corporation Page: 10 DRAFT
All Rights Reserved

The COM Specification Chapter 5. COM Clients

object.) This demonstrates how an object can be updated and new interfaces supported without any
recompilation on the part of existing clients while at the same time suddenly working with clients on a
higher level of integration than before. In order to remain compatible the object must insure that it
supports the older interfaces (such as IPersistStream) but is free to add new contracts—new interfaces such
as IPersistStorage—as it wants to provide new functionality.
The point of this example, which is also true for clients that use any other interfaces an object might
support in other scenarios, is that the client is empowered to make dynamic decisions on a per-object
basis through the QueryInterface function. Containers programmed to be dynamic as such allow object to
improve independently while insuring that the container will work as good—and generally better—as it
always has with any given object. All of this is due to the powerful and important QueryInterface
mechanism that for all intents and purposes is the single most important aspect of true system component
software.

1.6Releasing the Object
The final operation required in a COM client when dealing with an object from some other server is to
free that object when the client no longer needs it. This is achieved by calling the Release member
function of all interfaces obtained during the course of using the object.
Recall that a function that creates or synthesizes a new interface pointer is responsible for calling AddRef
through that pointer before returning it to the caller of the function. This applies to the
IClassFactory::CreateInstance function as well as CoCreateInstance (and for that matter, CoGetClassObject, too,
which is why you must call IClassFactory::Release after creating the object). Therefore, as far as the client
is concerned, the object will have a reference count of one after creation. The object may, in fact, have a
higher reference count if it is also being used from other clients as well, but each client is only
responsible and cognizant of the reference counts added on its behalf.
The other primary function that creates new interface pointers is QueryInterface. Every call the client
makes to QueryInterface to obtain another interface pointer will internally generate another call to AddRef in
that object, incrementing the reference count. Therefore, in addition to calling Release through the
interface pointer obtained in the creation sequence, the client must also call Release through any interface
pointer obtained from QueryInterface (this is illustrated in the pseudo-code of the previous section).
The bottom line is that the client is responsible for matching any operation that generates a call to AddRef
through a given interface pointer with a call to Release through that same interface pointer. It is not
necessary to call Release in the opposite order of calls to AddRef; it is just necessary to match the pairs.
Failure to do so will cause memory leaks as objects are not freed and servers are not allowed to shut
down properly. This is no different that forgetting to free memory obtained through malloc.
Finally, although the client matches its calls to AddRef and Release, the actual object may still continue to
run and the server may continue to execute as well without any objects in service. The object will
continue if other clients are using that same object and thus have reference counts on it. Only when all
clients have released their references will that object free itself. The server will, of course, continue to
execute as long as there is an object to serve, but the client does have some power over keeping a server
running even without objects. That is the purpose of Server Management functions in COM.

1.7Server Management
As mentioned in previous sections, a client has the ability to manage servers on the server level to keep
them running even when they are not serving any objects. The client’s primary mechanism for this is the
IClassFactory::LockServer function described above. By calling this function with the TRUE parameter, the
client places a ‘lock’ on the server. As long as the server either has objects created or has one or more
locks on it, the server will continue to execute. When the server detects a zero object and zero lock
condition, it can unload itself (which differs between DLL and EXE servers, as described in Chapter 7).
A client can place more than one lock on a server by calling IClassFactory::LockServer(TRUE) more than
once. Each call to LockServer(TRUE) must be matched with a call to LockServer(FALSE)—the server
maintains a lock count for the server as it maintains a reference count for its served objects. But while
AddRef and Release affect objects, LockServer affects the server itself.

DRAFT Page: 11 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 5. COM Clients The COM Specification

LockServer affects all servers—in-process, local, and remote—identically. The client does have some
additional control over in-process objects as it normally would for other DLLs through the functions
CoLoadLibrary, CoFreeUnusedLibraries, and CoFreeAllLibraries, as described below. Normally only
CoFreeUnusedLibraries is called from a client whereas the others are generally used inside the COM Library
to implement other API functions. In addition, the COM Library supplies one additional function that has
meaning in this context, CoIsHandlerConnected, that tells the container if an object handler is currently
working in association with a local server as described in its entry below.

CoFreeUnusedLibraries
void CoFreeUnusedLibraries(void)
This function and unloads any DLLs that have been loaded as a result of COM object creation calls but
which are no longer in use. Client applications can call this function periodically to free up resources.

CoIsHandlerConnected
BOOL CoIsHandlerConnected(pUnk)
Determines if the specified handler is connected to its corresponding object in a running local server. The
result of this function might be used in a client application to determine if certain operations might result
in launching a server application allowing the client to make performance decisions.
Argument Type Description
pUnk IUnknown * Specifies the object in question.
return value BOOL True if a handler is connected to a running server with the full object

implementation, FALSE if the handler is not connected.

Copyright © 1995 Microsoft Corporation Page: 12 DRAFT
All Rights Reserved

	1 COM Clients
	1.1 Identifying the Object Class
	1.2 Creating the Object
	1.2.1 The Class Factory Object: IClassFactory Interface
	IClassFactory::CreateInstance
	IClassFactory::LockServer

	1.3 Obtaining the Class Factory Object for a CLSID
	CoGetClassObject
	CoCreateInstance
	CoCreateInstanceEx

	1.4 Initializing the Object
	1.5 Managing the Object
	1.6 Releasing the Object
	1.7 Server Management
	CoFreeUnusedLibraries
	CoIsHandlerConnected

